Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Environ Manage ; 356: 120655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513589

RESUMO

High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.


Assuntos
Beta vulgaris , Solo , Solo/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiologia , Boro , Rizosfera , Verduras , Açúcares/metabolismo
2.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541120

RESUMO

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Assuntos
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metanol/farmacologia , Metanol/uso terapêutico , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicemia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Insulina , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Colesterol , Albuminas
3.
Int J Phytoremediation ; 26(3): 339-348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37553855

RESUMO

Cadmium (Cd) pollution is a huge threat to ecosystem health. In the manuscript, pot experiments were conducted to investigate the changes in plant biomass and antioxidant indicators under different cadmium pollution levels (0, 25, 50, and 100 mg/kg) of inoculation of plant growth-promoting bacteria ZG7 on sugar beet. The results showed that the accumulation of excess Cd in sugar beet exhibited different symptoms, including reduced biomass (p < 0.05). Compared with the group treated with uninoculated strain ZG7, inoculation of strain ZG7 significantly reduced the toxicity of sugar beet to Cd and enhanced its antioxidant capacity, with no significant differences in root biomass and increases in leaf biomass of 15.71, 5.84, and 74.12 under different Cd concentration treatments (25, 50, and 100 mg/kg), respectively. The root enrichment of Cd was reduced by 49.13, 47.26, and 21.50%, respectively (p < 0.05). The leaf fraction was reduced by 59.35, 29.86, and 30.99%, respectively (p < 0.05). In addition, the enzymatic activities of sucrase, urease, catalase, and neutral phosphatase were significantly enhanced in the soil (p < 0.05). This study helps us to further investigate the mechanism of cadmium toxicity reduction by inoculated microorganisms and provides a theoretical reference for growing plants in cadmium-contaminated agricultural fields.


The combination of microorganisms and phytoremediation is becoming a popular research topic. The selection of suitable plant growth promoting bacteria can not only promote the growth and development of plants and enhance their cadmium resistance, but also improve the soil quality. And the results of this study will be important for growing edible plants and improving soils in cadmium-contaminated areas.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Antioxidantes , Ecossistema , Biodegradação Ambiental , Solo , Bactérias , Açúcares , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Raízes de Plantas/química
4.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765032

RESUMO

Most of the currently available drugs are derived from natural sources, but they are used only after extensive chemical modifications to improve their safety and efficacy. Natural products are used in health supplements and cosmetic preparations and have been used as auxiliary drugs or alternative medicines. When used in combination with conventional drugs, these herbal products are known to alter their pharmacokinetics and pharmacodynamics, reducing their therapeutic effects. Moreover, herb-drug interactions (HDIs) may have serious side effects, which is one of the major concerns in health practice. It is postulated that HDIs affect the pathways regulating cytochrome P450 enzymes (CYPs). Betanin, the chief pigment of red beetroot (Beta vulgaris L.), has various types of pharmacological activity, such as anti-inflammatory, antioxidant, and anticancer effects. However, the potential risk of HDIs for betanin has not yet been studied. Thus, we aimed to predict more specific HDIs by evaluating the effects of betanin on CYPs (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), the major phase I metabolic enzymes, using fluorescence-/luminescence-based assays. Our results showed that betanin inhibited CYP3A4 activity in a dose-dependent manner (IC50 = 20.97 µΜ). Moreover, betanin acted as a competitive inhibitor of CYP3A4, as confirmed by evaluating Lineweaver-Burk plots (Ki value = 19.48 µΜ). However, no significant inhibitory effects were observed on other CYPs. Furthermore, betanin had no significant effect on CYP1A2, CYP2B6, or CYP2C9 induction in HepG2 cells. In conclusion, betanin acted as a competitive inhibitor of CYP3A4, and thus it should be used cautiously with other drugs that require metabolic enzymes as substrates. Additional in vivo studies and clinical trials are needed to further elucidate the HDIs of betanin.

5.
Foods ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761219

RESUMO

Beetroot (Beta vulgaris L.) is known for being a rich source of phytochemicals, minerals and vitamins. This study aims to show how the combination of extraction/chromatography/mass spectrometry and NMR offers an efficient way to profile metabolites in the extracts of beetroot. Such combination may lead to the identification of more nutritional or medicinal compounds in natural products, and it is essential for our ongoing investigation to study the selective adsorption/desorption of these metabolites' on/off nanoparticles. The aqueous and organic extracts underwent analyses using UV-vis spectroscopy; GC-MS; LC-MS; 1H, 13C, 31P, TOCSY, HSQC, and selective TOCSY NMR experiments. Polar Extract: The two forms of betalain pigment were identified by UV-vis and LC MS. Fourteen amino acids, sucrose, and other compounds, among which is riboflavin, were identified by LC-MS. Two-dimensional TOCSY showed the spin coupling correlations corresponding to some of these compounds. The HSQC spectrum showed 1H/13C spin correlation in sucrose, confirming its high abundance in beetroot. Organic Extract: GC-MS data enabled the identification of several compounds including six fatty acid methyl esters (FAME) with higher than, on average, 90% similarity score. Selective TOCSY NMR data showed the spin coupling pattern corresponding to oleic, linoleic, and linolenic fatty acids. 31P NMR spectra indicate that phospholipids exist in both the organic and aqueous phase.

6.
BMC Genomics ; 24(1): 413, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488485

RESUMO

BACKGROUND: Sugar beet (Beta vulgaris L.) is an economically essential sugar crop worldwide. Its agronomic traits are highly diverse and phenotypically plastic, influencing taproot yield and quality. The National Beet Medium-term Gene Bank in China maintains more than 1700 beet germplasms with diverse countries of origin. However, it lacks detailed genetic background associated with morphological variability and diversity. RESULTS: Here, a comprehensive genome-wide association study (GWAS) of 13 agronomic traits was conducted in a panel of 977 sugar beet accessions. Almost all phenotypic traits exhibited wide genetic diversity and high coefficient of variation (CV). A total of 170,750 high-quality single-nucleotide polymorphisms (SNPs) were obtained using the genotyping-by-sequencing (GBS). Neighbour-joining phylogenetic analysis, principal component analysis, population structure and kinship showed no obvious relationships among these genotypes based on subgroups or regional sources. GWAS was carried out using a mixed linear model, and 159 significant associations were detected for these traits. Within the 25 kb linkage disequilibrium decay of the associated markers, NRT1/PTR FAMILY 6.3 (BVRB_5g097760); nudix hydrolase 15 (BVRB_8g182070) and TRANSPORT INHIBITOR RESPONSE 1 (BVRB_8g181550); transcription factor MYB77 (BVRB_2g023500); and ethylene-responsive transcription factor ERF014 (BVRB_1g000090) were predicted to be strongly associated with the taproot traits of root groove depth (RGD); root shape (RS); crown size (CS); and flesh colour (FC), respectively. For the aboveground traits, UDP-glycosyltransferase 79B6 (BVRB_9g223780) and NAC domain-containing protein 7 (BVRB_5g097990); F-box protein At1g10780 (BVRB_6g140760); phosphate transporter PHO1 (BVRB_3g048660); F-box protein CPR1 (BVRB_8g181140); and transcription factor MYB77 (BVRB_2g023500) and alcohol acyltransferase 9 (BVRB_2g023460) might be associated with the hypocotyl colour (HC); plant type (PT); petiole length (PL); cotyledon size (C); and fascicled leaf type (FLT) of sugar beet, respectively. AP-2 complex subunit mu (BVRB_5g106130), trihelix transcription factor ASIL2 (BVRB_2g041790) and late embryogenesis abundant protein 18 (BVRB_5g106150) might be involved in pollen quantity (PQ) variation. The candidate genes extensively participated in hormone response, nitrogen and phosphorus transportation, secondary metabolism, fertilization and embryo maturation. CONCLUSIONS: The genetic basis of agronomical traits is complicated in heterozygous diploid sugar beet. The putative valuable genes found in this study will help further elucidate the molecular mechanism of each phenotypic trait for beet breeding.


Assuntos
Beta vulgaris , Estudo de Associação Genômica Ampla , Filogenia , Melhoramento Vegetal , Fatores de Transcrição , Antioxidantes , Variação Genética
7.
Front Plant Sci ; 14: 1185440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332716

RESUMO

Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.

8.
Front Plant Sci ; 14: 1100595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229110

RESUMO

Introduction: Sugarbeets account for 55 to 60% of U.S. sugar production. Cercospora leaf spot (CLS), primarily caused by the fungal pathogen Cercospora beticola, is a major foliar disease of sugarbeet. Since leaf tissue is a primary site of pathogen survival between growing seasons, this study evaluated management strategies to reduce this source of inoculum. Methods: Fall- and spring-applied treatments were evaluated over three years at two study sites. Treatments included standard plowing or tilling immediately post-harvest, as well as the following alternatives to tillage: a propane-fueled heat treatment either in the fall immediately pre-harvest or in the spring prior to planting, and a desiccant (saflufenacil) application seven days pre-harvest. After fall treatments, leaf samples were evaluated to determine C. beticola viability. The following season, inoculum pressure was measured by monitoring CLS severity in a susceptible beet variety planted into the same plots and by counting lesions on highly susceptible sentinel beets placed into the field at weekly intervals (fall treatments only). Results: No significant reductions in C. beticola survival or CLS were observed following fall-applied desiccant. The fall heat treatment, however, significantly reduced lesion sporulation (2019-20 and 2020-21, P < 0.0001; 2021-22, P < 0.05) and C. beticola isolation (2019-20, P < 0.05) in at-harvest samples. Fall heat treatments also significantly reduced detectable sporulation for up to 70- (2021-22, P < 0.01) or 90-days post-harvest (2020-21, P < 0.05). Reduced numbers of CLS lesions were observed on sentinel beets in heat-treated plots from May 26-June 2 (P < 0.05) and June 2-9 (P < 0.01) in 2019, as well as June 15-22 (P < 0.01) in 2020. Both fall- and spring-applied heat treatments also reduced the area under the disease progress curve for CLS assessed the season after treatments were applied (Michigan 2020 and 2021, P < 0.05; Minnesota 2019, P < 0.05; 2021, P < 0.0001). Discussion: Overall, heat treatments resulted in CLS reductions at levels comparable to standard tillage, with more consistent reductions across year and location. Based on these results, heat treatment of fresh or overwintered leaf tissue could be used as an integrated tillage-alternative practice to aid in CLS management.

9.
Metabolites ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984848

RESUMO

Beta vulgaris L. is an edible plant with health-beneficial activities. The profile of betaxanthins is more complex than previously described in beetroot cultivars. Twenty-four betaxanthins were detected in extracts of the peel and flesh of five cultivars by HPLC-DAD-ESI-MS, of which two new betaxanthins (arginine-Bx and ornithine-Bx) were detected for the first time in B. vulgaris cultivars. The content of betaxanthins in the studied cultivars decreased in the Tytus > Ceryl > Chrobry > Forono > Boldor sequence. The highest content of compounds (1231 mg/100 g DE) was observed in the Tytus cultivar (peel). The peel of B. vulgaris, which is often considered a waste, appeared to be a richer source of betaxanthins compared to its flesh. Antibacterial and antifungal activities were determined against twenty-three microorganisms. Tytus (peel) showed a moderate or good bactericidal effect, especially against the majority of Gram-positive bacteria as well as against most of the tested fungi (MIC = 0.125-0.5 mg/mL) and additionally characterized by low cytotoxicity towards non-cancerous cells (CC50 = 405 µg/mL, CC50-50% cytotoxic concentration). Tytus flesh also showed a high cytotoxicity value against human cervical adenocarcinoma (HeLa), with CC50 of 282 µg/mL. Correlation analysis was used to determine the relationship between the betaxanthin profiles and antimicrobial and anticancer activities. Arginine-Bx, proline-Bx, and tryptophan-Bx were indicated as active against HeLa and the colon cancer cell line (RKO), while asparagine-Bx and phenylalanine-Bx was responsible for activity against all tested bacterial and yeast species. The significant effectiveness and safety of these beetroots make indicated compounds promising applicants as antimicrobial and anticancer agents.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36901028

RESUMO

BACKGROUND: There is little evidence that nutraceuticals from beetroot extract are beneficial with regards to recovery of the cardiovascular parameters and the autonomic nervous system (ANS) after submaximal aerobic exercise, though this formulation is employed widely for this purpose. OBJECTIVE: To study the effects of beetroot extract supplementation on the recovery of cardiorespiratory and autonomic parameters after a session of submaximal aerobic exercise. METHODS: Sixteen healthy male adults commenced a cross-over, randomized, double-blind and placebo-controlled trial. Beetroot extract (600 mg) or placebo (600 mg) were ingested 120 min prior to evaluation on randomized days. We assessed systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), mean arterial pressure (MAP), heart rate (HR) and HR variability (HRV) indexes at Rest and during 60 min of recovery from submaximal aerobic exercise. RESULTS: Beetroot extract ingestion slightly accelerated HR, SBP, DBP and MAP reduction following exercise associated to the placebo protocol (vs. rest). Yet no group effect (p = 0.99) was identified between the beetroot and placebo protocols on HR mean, in addition to interaction (group vs. time) (p = 0.60). No group effect was attained between the SBP (p = 0.90), DBP (p = 0.88), MAP (p = 0.73) and PP (p = 0.99) protocols and no significant differences (group vs. time) were observed between the values of SBP (p = 0.75), DBP (p = 0.79), MAP (p = 0.93) and PP (p = 0.63) between placebo and beetroot protocols. Similarly, the reoccurrence of cardiac vagal modulation after exercise via the HF (ms2) was enhanced, but not with regards to the RMSSD index. No group effect (p = 0.99) was identified for the HF (p = 0.90) and RMSSD (p = 0.67) indices. Likewise, we observed no significant differences (group vs. time) amongst the values of HF (p = 0.69) and RMSSD (p = 0.95) between the placebo and beetroot protocols. CONCLUSION: Whilst beetroot extract might assist the recovery of the cardiovascular and autonomic systems following submaximal aerobic exercise in healthy males, these results seem insignificant owing to minor differences between interventions and are weak clinically.


Assuntos
Sistema Cardiovascular , Coração , Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Suplementos Nutricionais , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Verduras
11.
Front Plant Sci ; 14: 1118011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866366

RESUMO

Drought stress is one of the most severe abiotic stresses that restrict global crop production. Long non-coding RNAs (lncRNAs) have been proved to play a key role in response to drought stress. However, genome-wide identification and characterization of drought-responsive lncRNAs in sugar beet is still lacking. Thus, the present study focused on analyzing lncRNAs in sugar beet under drought stress. We identified 32017 reliable lncRNAs in sugar beet by strand-specific high-throughput sequencing. A total of 386 differentially expressed lncRNAs (DElncRNAs) were found under drought stress. The most significantly upregulated and downregulated lncRNAs were TCONS_00055787 (upregulated by more than 6000 fold) and TCONS_00038334 (downregulated by more than 18000 fold), respectively. Quantitative real-time PCR results exhibited a high concordance with RNA sequencing data, which conformed that the expression patterns of lncRNAs based on RNA sequencing were highly reliable. In addition, we predicted 2353 and 9041 transcripts that were estimated to be the cis- and trans-target genes of the drought-responsive lncRNAs. As revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the target genes of DElncRNAs were significantly enriched in organelle subcompartment, thylakoid, endopeptidase activity, catalytic activity, developmental process, lipid metabolic process, RNA polymerase activity, transferase activity, flavonoid biosynthesis and several other terms associated with abiotic stress tolerance. Moreover, 42 DElncRNAs were predicted as potential miRNA target mimics. LncRNAs have important effects on plant adaptation to drought conditions through the interaction with protein-encoding genes. The present study leads to greater insights into lncRNA biology and offers candidate regulators for improving the drought tolerance of sugar beet cultivars at the genetic level.

12.
Metabolites ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837895

RESUMO

In this study, a beetroot peel flour was made, and its in vitro antioxidant activity was determined in aqueous (BPFw) and ethanolic (BPFe) extracts. The influence of BPFw on breast cancer cell viability was also determined. A targeted betalain profile was obtained using high-resolution Q-Extractive Plus Orbitrap mass spectrometry (Obrtitrap-HRMS) alongside untargeted chemical profiling of BPFw using Ultra-High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry (UHPLC-HRMS). BPFw and BPFe presented satisfactory antioxidant activities, with emphasis on the total phenolic compounds and ORAC results for BPFw (301.64 ± 0.20 mg GAE/100 g and 3032.78 ± 55.00 µmol T/100 g, respectively). The MCF-7 and MDA-MB-231 breast cancer cells presented reductions in viability when treated with BPFw, showing dose-dependent behavior, with MDA-MB-231 also showing time-dependent behavior. The chemical profiling of BPFw led to the identification of 9 betalains and 59 other compounds distributed amongst 28 chemical classes, with flavonoids and their derivates and coumarins being the most abundant. Three forms of betalain generated via thermal degradation were identified. However, regardless of thermal processing, the BPF still presented satisfactory antioxidant and anticancer activities, possibly due to synergism with other identified molecules with reported anticancer activities via different metabolic pathways.

13.
Plant Dis ; 107(6): 1816-1821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415894

RESUMO

Cercospora leaf spot (CLS; causal agent Cercospora beticola Sacc.) is endemic in many sugar beet production regions due to the widespread distribution of C. beticola and the inability of current management practices to provide complete control of the disease. Roots harvested from plants with CLS, therefore, are inevitably incorporated into sugar beet root storage piles, even though the effects of CLS on root storage properties are largely unknown. Research was conducted to determine the effects of CLS on storage properties including root respiration rate, sucrose loss, invert sugar accumulation, loss in recoverable sucrose yield, and changes in sucrose loss to molasses with respect to CLS disease severity and storage duration. Roots were obtained from plants with four levels of CLS severity in each of three production years, stored at 5°C and 95% relative humidity for up to 120 days, and evaluated for storage characteristics after 30, 90, and 120 days storage. No significant or repeatable effects of CLS on root respiration rate, sucrose loss, invert sugar accumulation, loss in recoverable sucrose yield, or change in sucrose loss to molasses were detected after 30, 90, or 120 days storage regardless of the severity of CLS disease symptoms. Therefore, no evidence was found that CLS accelerates sugar beet storage losses, and it is concluded that roots harvested from plants with CLS can be stored without additional or specialized precaution, regardless of CLS symptom severity.


Assuntos
Ascomicetos , Beta vulgaris , Cercospora , Doenças das Plantas , Sacarose
14.
Food Sci Nutr ; 10(12): 4238-4246, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514772

RESUMO

Sugar beet (Beta vulgaris L.) is a good source of bioactive compounds. However, information on the biological properties of sugar beet root is limited and its beneficial effects have not been completely understood. In this work, 10 phenolic compounds have been separated and identified in various parts of sugar beet for the first time, including the most abundant epicatechin (31.16 ± 1.89 mg/100 g), gallic acid (30.57 ± 2.69 mg/100 g), and quercetin-3-O-rutinoside (30.14 ± 3.63 mg/100 g). The biological activity tests indicated that sugar beet peel potently scavenged the nitric oxide and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals with IC50 values of 88.17 ± 05.14 and 28.77 ± 0.62 µg/ml, respectively. In addition, sugar beet peel exhibited the highest reducing power, IC50 values of 11.98 ± 1.20 µg/ml, and the highest ion-chelating activity, IC50 values of 48.52% and 55.21% for cupric and ferrous ions at 250 µg/ml, respectively. Compared to synthetic antioxidants, sugar beet showed promising biological activities, which could be considered further in future studies.

15.
Plants (Basel) ; 11(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35890451

RESUMO

Beta vulgaris L. is a crop selected for cultivation in Space for its nutritional properties. However, exposure to ionizing radiation (IR) can alter plant photosynthetic performance and phytochemical production in the extraterrestrial environment. This study investigated if plant growth under different light quality regimes (FL-white fluorescent; RGB-red-green-blue; RB-red-blue) modifies the photosynthetic behavior and bioactive compound synthesis of plants sprouted by dry seeds irradiated with carbon or titanium high-energy ions. The study evidenced that: (i) the plant response depends on the type of heavyion; (ii) control and C-ion-irradiated plants were similar for photosynthetic pigment content and PSII photochemical efficiency, regardless of the LQ regime; (iii) under FL, net photosynthesis (AN) and water use efficiency (iWUE) declined in C- and Ti-ion plants compared to control, while the growth of irradiated plants under RGB and RB regimes offset these differences; (iv) the interaction Ti-ion× RB improved iWUE, and stimulated the production of pigments, carbohydrates, and antioxidants. The overall results highlighted that the cultivation of irradiated plants under specific LQ regimes effectively regulates photosynthesis and bioactive compound amounts in leaf edible tissues. In particular, the interaction Ti-ion × RB improved iWUE and increased pigments, carbohydrates, and antioxidant content.

16.
Front Nutr ; 9: 823039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369064

RESUMO

Background: Although there are a considerable number of clinical studies on nitrate (NO3) rich beetroot juice (BRJ) and hypertension, it is difficult to indicate the real effects of NO3 from BRJ on the BP of hypertensive patients because there are still no estimates of the effects of NO3 derived from BRJ on the BP of hypertension patients. Objective: To clarify these effects, we developed a systematic literature review with a meta-analysis of randomized clinical trials (RCTs). Design: The searches were accomplished through EMBASE, Cochrane Library, MEDLINE, CINAHL, Web of Science, and LILACS databases. The study included single or double-blinded RCTs and participants older than 18 years with hypertension [systolic BP (SBP) > 130 mmHg and diastolic BP (DBP) > 80 mmHg]. NO3 BRJ was required to be consumed in a format that possibly blinded participants/researchers. These studies should also report the SBP and DBP values (mmHg) measured before and after the treatment. Risk of Bias tools and GRADE were enforced. Results: Seven studies were included (218 participants). BRJ intervention time ranged from 3 to 60 days with daily dosages of 70-250 mL of BRJ. After the intervention with NO3 from BRJ, SBP underwent significant changes (p < 0.001) of -4.95 (95% CI: -8.88; -1.01) (GRADE: ⊕⊕⊕○ Moderate), but not for DBP (p = 0.06) -0.90 mmHg (95% CI: -3.16; 1.36) (GRADE: ⊕⊕⊕○ Moderate), compared to the control group. Conclusions: The NO3 derived from BRJ reduces SBP, but not DBP in patients with arterial hypertension. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=269339.

17.
Vavilovskii Zhurnal Genet Selektsii ; 26(1): 30-39, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35342857

RESUMO

The table beet, a widespread edible root crop known for its medicinal and antioxidant properties, early maturation, good shelf life, and high contents of bioactive compounds, vitamins and minerals, is used for the production of a natural red food dye. The relevance of this study is dictated by the lack of knowledge about the dynamic changes in the content of betanin during the growing season when developing table beet cultivars with a focus on pigment extraction. The article presents the results of a study of 29 red-colored table beet accessions from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR). Dynamic changes in the content of the pigment during the growing season were observed on two beet accessions, cvs. 'Russkaya odnosemyannaya' and 'Bordo odnosemyannaya'. Four pH versions of the buffer solution were tested, and the test results are presented. A buffer solution with pH 6.5 is recommended for research purposes. The amplitude of variability in the content of betanin in the peel (39.9-239.2 mg/100 g) and f lesh (14.4-127.5 mg/100 g) of beets was determined. It was conf irmed that the content of betanin in the peel exceeded that in the f lesh in all samples. A positive relationship between these indicators was revealed (r = 0.74, p ≤ 0.05). It was found that betanin accumulation did not occur in beet roots during the growing season. The pigment showed considerable f luctuations associated with abiotic environmental factors. Correlation analysis showed a signif icant positive relationship between air temperature and betanin content in the root f lesh (r = 0.32-0.31, p ≤ 0.05). A negative impact of environmental temperature on betanin content in the peel manifested itself on the third day (r = -0.34…-0.35, p ≤ 0.05). The negative response to precipitation was less expressed in cv. 'Bordo odnosemyannaya' due to the genotype's more active metabolism and plasticity. Structural morphological features of the photosynthetic apparatus were described for the tested accessions, and their interrelations with the studied character were specif ied. Recommendations are given concerning the choice of a planting pattern and the timing of table beet harvesting for pigment extraction.

18.
Environ Sci Pollut Res Int ; 29(29): 44186-44198, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128612

RESUMO

Copper (Cu) can be toxic to vegetables when it is absorbed and accumulated at large concentrations, a fact that increases the risk of excessive addition of this metal to the human food chain. The aims of the current study are (1) to determine the Cu concentrations that have critical toxic effects on beet and cabbage plants, and the potential of these plants to enter the human food chain, as well as (2) to assess the physiological and biochemical responses of representatives of these vegetables grown in nutrient solution presenting increasing Cu concentrations. Beet and cabbage plants were grown for 75 days in pots filled with sand added with nutrient solution presenting six Cu concentrations: 0.00, 0.52, 1.02, 1.52, 2.02 and 2.52 mg Cu L-1. Dry matter yield and Cu accumulation in different plant organs were evaluated. Photosynthetic pigment contents, lipid peroxidation levels (TBARs), superoxide dismutase (SOD) and peroxidase (POD) activity and hydrogen peroxide (H2O2) concentrations in leaves were evaluated. Critical Cu concentrations that led to toxicity in plant organs such as beetroot and cabbage head, which are often found in human diets, corresponded to 1.43 mg Cu L-1 and 1.59 mg Cu L-1, respectively. High Cu concentrations in the nutrient solution have increased Cu concentrations and accumulation in plant tissues. This outcome justified the increased POD and SOD enzyme activity in the leaves of beet and cabbage plants, respectively, and was the cause of reduced plant growth in both crops. Cabbage plants presented higher tolerance to increased Cu levels in the growing environment than beet plants. However, it is necessary being careful at the time to consume both vegetables, when they are grown in Cu-enriched environments.


Assuntos
Beta vulgaris , Brassica , Poluentes do Solo , Cobre/análise , Cadeia Alimentar , Peróxido de Hidrogênio/farmacologia , Poluentes do Solo/análise , Superóxido Dismutase , Verduras
19.
Front Plant Sci ; 13: 1101171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726677

RESUMO

Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.

20.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884427

RESUMO

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Chumbo/farmacologia , Canais de Potássio/metabolismo , Vacúolos/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Canais de Potássio/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...